Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 10(3)2021 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673645

RESUMO

Eosinophils, previously considered terminally differentiated effector cells, have multifaceted functions in tissues. We previously found that allergic mice with eosinophil-rich inflammation were protected from severe influenza and discovered specialized antiviral effector functions for eosinophils including promoting cellular immunity during influenza. In this study, we hypothesized that eosinophil responses during the early phase of influenza contribute to host protection. Using in vitro and in vivo models, we found that eosinophils were rapidly and dynamically regulated upon influenza A virus (IAV) exposure to gain migratory capabilities to traffic to lymphoid organs after pulmonary infection. Eosinophils were capable of neutralizing virus upon contact and combinations of eosinophil granule proteins reduced virus infectivity through hemagglutinin inactivation. Bi-directional crosstalk between IAV-exposed epithelial cells and eosinophils occurred after IAV infection and cross-regulation promoted barrier responses to improve antiviral defenses in airway epithelial cells. Direct interactions between eosinophils and airway epithelial cells after IAV infection prevented virus-induced cytopathology in airway epithelial cells in vitro, and eosinophil recipient IAV-infected mice also maintained normal airway epithelial cell morphology. Our data suggest that eosinophils are important in the early phase of IAV infection providing immediate protection to the epithelial barrier until adaptive immune responses are deployed during influenza.


Assuntos
Moléculas de Adesão Celular/metabolismo , Eosinófilos/metabolismo , Células Epiteliais/metabolismo , Perfilação da Expressão Gênica/métodos , Vírus da Influenza A/genética , Animais , Modelos Animais de Doenças , Humanos , Camundongos
2.
Methods Mol Biol ; 2241: 99-112, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33486731

RESUMO

Eosinophils are granulocytes that were historically considered to be terminally differentiated at the time of bone marrow egress. However, more recent evidence provides a new outlook on these cells as complex immunomodulators that are involved in host defense and homeostasis. Our work established a role for eosinophils as mediators of antiviral immune responses during influenza in hosts that were sensitized and challenged with fungal allergens. Herein, we describe methods for working with murine eosinophils in the context of influenza A virus.


Assuntos
Eosinófilos/citologia , Micoses/imunologia , Viroses/imunologia , Alérgenos , Animais , Asma/imunologia , Modelos Animais de Doenças , Cães , Eosinófilos/imunologia , Vírus da Influenza A/imunologia , Vírus da Influenza A/patogenicidade , Contagem de Leucócitos , Células Madin Darby de Rim Canino , Camundongos
3.
Biomedicines ; 8(10)2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036262

RESUMO

Asthma affects over 8% of the pediatric population in the United States, and Memphis, Tennessee has been labeled an asthma capital. Plasma samples were analyzed for biomarker profiles from 95 children with severe asthma and 47 age-matched, hospitalized nonasthmatic controls at Le Bonheur Children's Hospital in Memphis, where over 4000 asthmatics are cared for annually. Asthmatics exhibited significantly higher levels of periostin, surfactant protein D, receptor for advanced glycation end products and ß-hexosaminidase compared to controls. Children with severe asthma had lower levels of IgG1, IgG2 and IgA, and higher levels of IgE compared to controls, and approximately half of asthmatics exhibited IgG1 levels that were below age-specific norms. Vitamin A levels, measured by the surrogate retinol-binding protein, were insufficient or deficient in most asthmatic children, and correlated positively with IgG1. Which came first, asthma status or low levels of vitamin A and immunoglobulins? It is likely that inflammatory disease and immunosuppressive drugs contributed to a reduction in vitamin A and immunoglobulin levels. However, a nonmutually exclusive hypothesis is that low dietary vitamin A caused reductions in immune function and rendered children vulnerable to respiratory disease and consequent asthma pathogenesis. Continued attention to nutrition in combination with the biomarker profile is recommended to prevent and treat asthma in vulnerable children.

4.
J Leukoc Biol ; 108(1): 151-168, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32386457

RESUMO

Allergic asthma and influenza are common respiratory diseases with a high probability of co-occurrence. During the 2009 influenza pandemic, hospitalized patients with influenza experienced lower morbidity if asthma was an underlying condition. We have previously demonstrated that acute allergic asthma protects mice from severe influenza and have implicated eosinophils in the airways of mice with allergic asthma as participants in the antiviral response. However, very little is known about how eosinophils respond to direct exposure to influenza A virus (IAV) or the microenvironment in which the viral burden is high. We hypothesized that eosinophils would dynamically respond to the presence of IAV through phenotypic, transcriptomic, and physiologic changes. Using our mouse model of acute fungal asthma and influenza, we showed that eosinophils in lymphoid tissues were responsive to IAV infection in the lungs and altered surface expression of various markers necessary for cell activation in a niche-specific manner. Siglec-F expression was altered in a subset of eosinophils after virus exposure, and those expressing high Siglec-F were more active (IL-5Rαhi CD62Llo ). While eosinophils exposed to IAV decreased their overall transcriptional activity and mitochondrial oxygen consumption, transcription of genes encoding viral recognition proteins, Ddx58 (RIG-I), Tlr3, and Ifih1 (MDA5), were up-regulated. CD8+ T cells from IAV-infected mice expanded in response to IAV PB1 peptide-pulsed eosinophils, and CpG methylation in the Tbx21 promoter was reduced in these T cells. These data offer insight into how eosinophils respond to IAV and help elucidate alternative mechanisms by which they regulate antiviral immune responses during IAV infection.


Assuntos
Eosinófilos/imunologia , Vírus da Influenza A/imunologia , Animais , Antígenos de Diferenciação Mielomonocítica/metabolismo , Antígenos Virais/imunologia , Asma/imunologia , Asma/patologia , Asma/virologia , Células da Medula Óssea/patologia , Linfócitos T CD8-Positivos/imunologia , Respiração Celular/genética , Galinhas , Desmetilação do DNA , Cães , Eosinófilos/metabolismo , Epigênese Genética , Feminino , Subunidade alfa de Receptor de Interleucina-5/metabolismo , Pulmão/patologia , Pulmão/virologia , Células Madin Darby de Rim Canino , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Fenótipo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Proteínas com Domínio T/metabolismo , Transcriptoma/genética , Regulação para Cima
5.
Front Immunol ; 11: 3, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117216

RESUMO

The primary function of the respiratory system of gas exchange renders it vulnerable to environmental pathogens that circulate in the air. Physical and cellular barriers of the respiratory tract mucosal surface utilize a variety of strategies to obstruct microbe entry. Physical barrier defenses including the surface fluid replete with antimicrobials, neutralizing immunoglobulins, mucus, and the epithelial cell layer with rapidly beating cilia form a near impenetrable wall that separates the external environment from the internal soft tissue of the host. Resident leukocytes, primarily of the innate immune branch, also maintain airway integrity by constant surveillance and the maintenance of homeostasis through the release of cytokines and growth factors. Unfortunately, pathogens such as influenza virus and Streptococcus pneumoniae require hosts for their replication and dissemination, and prey on the respiratory tract as an ideal environment causing severe damage to the host during their invasion. In this review, we outline the host-pathogen interactions during influenza and post-influenza bacterial pneumonia with a focus on inter- and intra-cellular crosstalk important in pulmonary immune responses.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Vírus da Influenza A/imunologia , Influenza Humana/imunologia , Infecções Pneumocócicas/imunologia , Mucosa Respiratória/imunologia , Streptococcus pneumoniae/imunologia , Animais , Coinfecção/imunologia , Citocinas/metabolismo , Células Epiteliais/imunologia , Humanos , Imunidade Inata , Influenza Humana/tratamento farmacológico , Influenza Humana/virologia , Leucócitos/imunologia , Pulmão/imunologia , Camundongos , Infecções Pneumocócicas/tratamento farmacológico , Infecções Pneumocócicas/microbiologia
6.
Sci Rep ; 9(1): 19360, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852944

RESUMO

Asthma is a chronic airways condition that can be exacerbated during respiratory infections. Our previous work, together with epidemiologic findings that asthmatics were less likely to suffer from severe influenza during the 2009 pandemic, suggest that additional complications of influenza such as increased susceptibility to bacterial superinfection, may be mitigated in allergic hosts. To test this hypothesis, we developed a murine model of 'triple-disease' in which mice rendered allergic to Aspergillus fumigatus were co-infected with influenza A virus and Streptococcus pneumoniae seven days apart. Significant alterations to known synergistic effects of co-infection were noted in the allergic mice including reduced morbidity and mortality, bacterial burden, maintenance of alveolar macrophages, and reduced lung inflammation and damage. The lung microbiome of allergic mice differed from that of non-allergic mice during co-infection and antibiotic-induced perturbation to the microbiome rendered allergic animals susceptible to severe morbidity. Our data suggest that responses to co-infection in allergic hosts likely depends on the immune and microbiome states and that antibiotics should be used with caution in individuals with underlying chronic lung disease.


Assuntos
Coinfecção/microbiologia , Coinfecção/virologia , Hipersensibilidade/microbiologia , Inflamação/microbiologia , Vírus da Influenza A Subtipo H1N1/fisiologia , Pulmão/microbiologia , Microbiota , Streptococcus pneumoniae/fisiologia , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biodiversidade , Coinfecção/tratamento farmacológico , Coinfecção/imunologia , Hipersensibilidade/complicações , Hipersensibilidade/tratamento farmacológico , Hipersensibilidade/imunologia , Inflamação/complicações , Inflamação/tratamento farmacológico , Inflamação/imunologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/virologia , Camundongos Endogâmicos C57BL , Microbiota/efeitos dos fármacos , Modelos Biológicos , Infecções por Orthomyxoviridae/complicações , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/prevenção & controle , Pneumonia Bacteriana/complicações , Pneumonia Bacteriana/tratamento farmacológico , Pneumonia Bacteriana/prevenção & controle
7.
Curr Allergy Asthma Rep ; 19(8): 36, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31218528

RESUMO

PURPOSE OF REVIEW: Eosinophils are short-lived granulocytes that contain a variety of proteins and lipids traditionally associated with host defense against parasites. The primary goal of this review is to examine more recent evidence that challenged this rather outdated role of eosinophils in the context of pulmonary infections with helminths, viruses, and bacteria. RECENT FINDINGS: While eosinophil mechanisms that counter parasites, viruses, and bacteria are similar, the kinetics and impact may differ by pathogen type. Major antiparasitic responses include direct killing and immunoregulation, as well as some mechanisms by which parasite survival/growth is supported. Antiviral defenses may be as unembellished as granule protein-induced direct killing or more urbane as serving as a conduit for better adaptive immune responses to the invading virus. Although sacrificial, eosinophil DNA emitted in response to bacteria helps trap bacteria to limit dissemination. Herein, we discuss the current research redefining eosinophils as multifunctional cells that are active participants in host defense against lung pathogens. Eosinophils recognize and differentially respond to invading pathogens, allowing them to deploy innate defense mechanisms to contain and clear the infection, or modulate the immune response. Modern technology and animal models have unraveled hitherto unknown capabilities of this surreptitious cell that indubitably has more functions awaiting discovery.


Assuntos
Eosinófilos/imunologia , Infecções Respiratórias/sangue , Humanos
8.
Microb Pathog ; 127: 212-219, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30529429

RESUMO

Asthma and influenza are leading causes of worldwide morbidity and mortality. Although these two conditions can co-exist in the same patient, the immune parameters that impact disease outcomes are not fully elucidated. The importance of macrophages to both conditions suggested a role for CD14, a co-receptor for endotoxin, as a regulatory mechanism for innate immune responses during asthma and influenza co-morbidity. Herein, we hypothesized that parameters of influenza morbidity will be reduced in the absence of CD14. Age and gender matched wild-type (WT) and CD14 knock-out (KO) mice were subjected to our validated model of Aspergillus-induced model of asthma and/or influenza. Characteristics of disease pathogenesis were investigated using standard methods in weight loss, flow cytometry, airway resistance, histology, quantitative real-time PCR, and viral titer quantification. The absence of CD14 did not have an impact on morbidity as these mice were equally susceptible to disease with similar airway resistance. Peribronchovascular inflammation and goblet cell content were equivalent between WT and KO mice in asthma alone and asthma and influenza co-morbidity. Co-morbid KO mice had less lymphocytes and eosinophils in the airways although their lung viral burden was equivalent to WT. Inflammatory gene signatures were altered in co-morbid mice in each genotype. CD14 expression on macrophages is necessary for airway inflammation but not for viral pathogenesis in allergic hosts.


Assuntos
Asma/patologia , Receptores de Lipopolissacarídeos/metabolismo , Macrófagos/imunologia , Macrófagos/virologia , Infecções por Orthomyxoviridae/patologia , Orthomyxoviridae/imunologia , Animais , Peso Corporal , Modelos Animais de Doenças , Citometria de Fluxo , Histocitoquímica , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real , Carga Viral
9.
Sci Rep ; 8(1): 7061, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29728628

RESUMO

Asthma is characterized by inflammation and architectural changes in the lungs. A number of immune cells and mediators are recognized as initiators of asthma, although therapeutics based on these are not always effective. The multifaceted nature of this syndrome necessitate continued exploration of immunomodulators that may play a role in pathogenesis. We investigated the role of resistin-like molecule-beta (RELM-ß), a gut antibacterial, in the development and pathogenesis of Aspergillus-induced allergic airways disease. Age and gender matched C57BL/6J and Retnlb-/- mice rendered allergic to Aspergillus fumigatus were used to measure canonical markers of allergic asthma at early and late time points. Inflammatory cells in airways were similar, although Retnlb-/- mice had reduced tissue inflammation. The absence of RELM-ß elevated serum IgA and pro-inflammatory cytokines in the lungs at homeostasis. Markers of chronic disease including goblet cell numbers, Muc genes, airway wall remodelling, and hyperresponsiveness were greater in the absence RELM-ß. Specific inflammatory mediators important in antimicrobial defence in allergic asthma were also increased in the absence of RELM-ß. These data suggest that while characteristics of allergic asthma develop in the absence of RELM-ß, that RELM-ß may reduce the development of chronic markers of allergic airways disease.


Assuntos
Asma/diagnóstico , Asma/etiologia , Suscetibilidade a Doenças , Hormônios Ectópicos/genética , Remodelação das Vias Aéreas/genética , Remodelação das Vias Aéreas/imunologia , Alérgenos/imunologia , Animais , Asma/metabolismo , Biomarcadores , Citocinas/metabolismo , Modelos Animais de Doenças , Células Caliciformes/metabolismo , Imunidade Humoral , Imunoglobulina A/imunologia , Mediadores da Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Metaplasia , Camundongos , Camundongos Knockout
10.
Biomed Res Int ; 2018: 3298378, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29511677

RESUMO

Severe asthma with fungal sensitization predominates in the population suffering from allergic asthma, to which there is no cure. While corticosteroids are the mainstay in current treatment, other means of controlling inflammation may be beneficial. Herein, we hypothesized that mannan from Saccharomyces cerevisiae would dampen the characteristics of fungal allergic asthma by altering the pulmonary immune responses. Using wild-type and transgenic mice expressing the human mannose receptor on smooth muscle cells, we explored the outcome of mannan administration during allergen exposure on the pathogenesis of fungal asthma through measurement of cardinal features of disease such as inflammation, goblet cell number, and airway hyperresponsiveness. Mannan treatment did not alter most hallmarks of allergic airways disease in wild-type mice. Transgenic mice treated with mannan during allergen exposure had an equivalent response to non-mannan-treated allergic mice except for a prominent granulocytic influx into airways and cytokine availability. Our studies suggest no role for mannan as an inflammatory regulator during fungal allergy.


Assuntos
Asma/tratamento farmacológico , Hipersensibilidade/tratamento farmacológico , Inflamação/tratamento farmacológico , Mananas/administração & dosagem , Alérgenos/imunologia , Alérgenos/toxicidade , Animais , Aspergillus/imunologia , Aspergillus/patogenicidade , Asma/imunologia , Asma/microbiologia , Asma/patologia , Citocinas/genética , Humanos , Hipersensibilidade/imunologia , Hipersensibilidade/microbiologia , Hipersensibilidade/patologia , Imunoglobulina E/genética , Imunoglobulina E/imunologia , Inflamação/imunologia , Inflamação/microbiologia , Mananas/química , Camundongos , Hipersensibilidade Respiratória/tratamento farmacológico , Hipersensibilidade Respiratória/imunologia , Saccharomyces cerevisiae/química
11.
Immunobiology ; 222(12): 1064-1073, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28889999

RESUMO

Humoral immunity serve dual functions of direct pathogen neutralization and enhancement of leukocyte function. Antibody classes are determined by antigen triggers, and the resulting antibodies can contribute to disease pathogenesis and host defense. Although asthma and influenza are immunologically distinct diseases, since we have found that allergic asthma exacerbation promotes antiviral host responses to influenza A virus, we hypothesized that humoral immunity may contribute to allergic host protection during influenza. C57BL/6J mice sensitized and challenged with Aspergillus fumigatus (or not) were infected with pandemic influenza A/CA/04/2009 virus. Negative control groups included naïve mice, and mice with only 'asthma' or influenza. Concentrations of antibodies were quantified by ELISA, and in situ localization of IgA- and IgE-positive cells in the lungs was determined by immunohistochemistry. The number and phenotype of B cells in spleens and mediastinal lymph nodes were determined by flow cytometry at predetermined timepoints after virus infection until viral clearance. Mucosal and systemic antibodies remained elevated in mice with asthma and influenza with prominent production of IgE and IgA compared to influenza-only controls. B cell expansion was prominent in the mediastinal lymph nodes of allergic mice during influenza where most cells produced IgG1 and IgA. Although allergy-skewed B cell responses dominated in mice with allergic airways inflammation during influenza virus infection, virus-specific antibodies were also induced. Future studies are required to identify the mechanisms involved with B cell activation and function in allergic hosts facing respiratory viral infections.


Assuntos
Aspergilose/imunologia , Aspergillus fumigatus/imunologia , Asma/imunologia , Linfócitos B/imunologia , Vírus da Influenza A/imunologia , Influenza Humana/imunologia , Infecções por Orthomyxoviridae/imunologia , Animais , Anticorpos Antivirais/sangue , Feminino , Humanos , Imunidade Humoral , Imunoglobulina A/metabolismo , Imunoglobulina E/sangue , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia , Baço/patologia
12.
J Immunol Res ; 2017: 8903982, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28770233

RESUMO

In asthmatic airways, repeated epithelial damage and repair occur. No current therapy directly targets this process. We aimed to determine the effects of mannan derived from S. cerevisiae (SC-MN) on airway epithelial wound repair, in vitro. The presence of functional mannose receptors in bronchial epithelial cells was shown by endocytosis of colloidal gold-Man BSA via clathrin-coated pits in 16HBE cells. In primary normal human bronchial epithelial cells (NHBEC), SC-MN significantly facilitated wound closure. Treatment with SC-MN stimulated cell spreading as indicated by a significant increase in the average lamellipodial width of wound edge 16HBE cells. In addition, NHBEC treated with SC-MN showed increased expression and activation of Krüppel-like factors (KLFs) 4 and 5, transcription factors important in epithelial cell survival and regulation of epithelial-mesenchymal transition. We conclude that SC-MN facilitates wound repair in human bronchial epithelium, involving mannose receptors.


Assuntos
Lectinas Tipo C/metabolismo , Mananas/farmacologia , Lectinas de Ligação a Manose/metabolismo , Prebióticos , Receptores de Superfície Celular/metabolismo , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Saccharomyces cerevisiae/química , Cicatrização/efeitos dos fármacos , Asma/patologia , Asma/fisiopatologia , Brônquios/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Mananas/isolamento & purificação , Receptor de Manose
13.
J Immunol Res ; 2017: 3432701, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28835901

RESUMO

One of the unmet needs for asthma management is a new therapeutic agent with both anti-inflammatory and anti-smooth muscle (ASM) remodeling effects. The mannose receptor (MR) family plays an important role in allergen uptake and processing of major allergens Der p 1 and Fel d 1. We have previously reported that ASM cells express a mannose receptor (ASM-MR) and that mannan derived from Saccharomyces cerevisiae (SC-MN) inhibits mannosyl-rich lysosomal hydrolase-induced bovine ASM cell proliferation. Using a humanized transgenic mouse strain (huASM-MRC2) expressing the human MRC2 receptor in a SM tissue-specific manner, we have demonstrated that ASM hyperplasia/hypertrophy can occur as early as 15 days after allergen challenge in this mouse model and this phenomenon is preventable with SC-MN treatment. This proof-of-concept study would facilitate future development of a potential asthma therapeutic agent with dual function of anti-inflammatory and anti-smooth muscle remodeling effects.


Assuntos
Alérgenos/imunologia , Asma/prevenção & controle , Mananas/administração & dosagem , Prebióticos/administração & dosagem , Saccharomyces cerevisiae/química , Remodelação das Vias Aéreas/efeitos dos fármacos , Animais , Clonagem Molecular , Modelos Animais de Doenças , Humanos , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Receptor de Manose , Lectinas de Ligação a Manose/genética , Lectinas de Ligação a Manose/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Músculo Liso/efeitos dos fármacos , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
14.
J Immunol ; 198(8): 3214-3226, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28283567

RESUMO

Eosinophils are multifunctional cells of the innate immune system linked to allergic inflammation. Asthmatics were more likely to be hospitalized but less likely to suffer severe morbidity and mortality during the 2009 influenza pandemic. These epidemiologic findings were recapitulated in a mouse model of fungal asthma wherein infection during heightened allergic inflammation was protective against influenza A virus (IAV) infection and disease. Our goal was to delineate a mechanism(s) by which allergic asthma may alleviate influenza disease outcome, focused on the hypothesis that pulmonary eosinophilia linked with allergic respiratory disease is able to promote antiviral host defenses against the influenza virus. The transfer of eosinophils from the lungs of allergen-sensitized and challenged mice into influenza virus-infected mice resulted in reduced morbidity and viral burden, improved lung compliance, and increased CD8+ T cell numbers in the airways. In vitro assays with primary or bone marrow-derived eosinophils were used to determine eosinophil responses to the virus using the laboratory strain (A/PR/08/1934) or the pandemic strain (A/CA/04/2009) of IAV. Eosinophils were susceptible to IAV infection and responded by activation, piecemeal degranulation, and upregulation of Ag presentation markers. Virus- or viral peptide-exposed eosinophils induced CD8+ T cell proliferation, activation, and effector functions. Our data suggest that eosinophils promote host cellular immunity to reduce influenza virus replication in lungs, thereby providing a novel mechanism by which hosts with allergic asthma may be protected from influenza morbidity.


Assuntos
Asma/imunologia , Eosinófilos/imunologia , Vírus da Influenza A/imunologia , Infecções por Orthomyxoviridae/imunologia , Animais , Asma/complicações , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Citometria de Fluxo , Hipersensibilidade/complicações , Hipersensibilidade/imunologia , Ativação Linfocitária/imunologia , Camundongos , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Infecções por Orthomyxoviridae/complicações , Eosinofilia Pulmonar/imunologia
15.
Antiviral Res ; 133: 208-17, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27531368

RESUMO

Influenza is a disease of the respiratory system caused by single stranded RNA viruses with varying genotypes. Immunopathogenesis to influenza viruses differs based on virus strain, dose, and mouse strain used in laboratory models. Although effective mucosal immune defenses are important in early host defense against influenza, information on the kinetics of these immune defense mechanisms during the course of influenza infection is limited. We investigated changes to antimicrobial peptides and primary innate immune cells at early time points after infection and compared these variables between two prominent H1N1 influenza A virus (IAV) strains, A/CA/04/2009 and A/PR/08/1934 in C57BL/6 mice. Alveolar and parenchymal macrophage ratios were altered after IAV infection and pro-inflammatory cytokine production in macrophages was induced after IAV infection. Genes encoding antimicrobial peptides, ß-defensin (Defb4), bactericidal-permeability increasing protein (Bpifa1), and cathelicidin antimicrobial peptide (Camp), were differentially regulated after IAV infection and the kinetics of Defb4 expression differed in response to each virus strain. Beta-defensin reduced infectivity of A/CA/04/2009 virus but not A/PR/08/1934. Beta defensins also changed the innate immune cell profile wherein mice pre-treated with ß-defensin had increased alveolar macrophages and CD103(+) dendritic cells, and reduced CD11b(+) dendritic cells and neutrophils. In addition to highlighting that immune responses may vary based on influenza virus strain used, our data suggest an important role for antimicrobial peptides in host defense against influenza virus.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/efeitos dos fármacos , Vírus da Influenza A/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Modelos Animais de Doenças , Feminino , Vírus da Influenza A/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/patologia , Sistema Respiratório/imunologia , Sistema Respiratório/metabolismo , Sistema Respiratório/patologia , Sistema Respiratório/virologia , Replicação Viral , beta-Defensinas/genética , beta-Defensinas/metabolismo , beta-Defensinas/farmacologia
16.
PLoS Pathog ; 9(11): e1003727, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24244159

RESUMO

Streptococcus pneumoniae infection is a leading cause of bacterial pneumonia, sepsis and meningitis and is associated with high morbidity and mortality. Type I interferon (IFN-I), whose contribution to antiviral and intracellular bacterial immunity is well established, is also elicited during pneumococcal infection, yet its functional significance is not well defined. Here, we show that IFN-I plays an important role in the host defense against pneumococci by counteracting the transmigration of bacteria from the lung to the blood. Mice that lack the type I interferon receptor (Ifnar1 (-/-)) or mice that were treated with a neutralizing antibody against the type I interferon receptor, exhibited enhanced development of bacteremia following intranasal pneumococcal infection, while maintaining comparable bacterial numbers in the lung. In turn, treatment of mice with IFNß or IFN-I-inducing synthetic double stranded RNA (poly(I:C)), dramatically reduced the development of bacteremia following intranasal infection with S. pneumoniae. IFNß treatment led to upregulation of tight junction proteins and downregulation of the pneumococcal uptake receptor, platelet activating factor receptor (PAF receptor). In accordance with these findings, IFN-I reduced pneumococcal cell invasion and transmigration across epithelial and endothelial layers, and Ifnar1 (-/-) mice showed overall enhanced lung permeability. As such, our data identify IFN-I as an important component of the host immune defense that regulates two possible mechanisms involved in pneumococcal invasion, i.e. PAF receptor-mediated transcytosis and tight junction-dependent pericellular migration, ultimately limiting progression from a site-restricted lung infection to invasive, lethal disease.


Assuntos
Barreira Alveolocapilar/metabolismo , Barreira Hematoencefálica/metabolismo , Interferon Tipo I/metabolismo , Pneumonia Pneumocócica/metabolismo , Streptococcus pneumoniae/patogenicidade , Animais , Bacteriemia/genética , Bacteriemia/metabolismo , Barreira Alveolocapilar/microbiologia , Barreira Alveolocapilar/patologia , Barreira Hematoencefálica/microbiologia , Barreira Hematoencefálica/patologia , Interferon Tipo I/genética , Camundongos , Camundongos Knockout , Pneumonia Pneumocócica/genética , Pneumonia Pneumocócica/patologia , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Streptococcus pneumoniae/metabolismo
17.
Infect Immun ; 76(2): 646-57, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18039836

RESUMO

Pneumococcal disease continues to account for significant morbidity and mortality worldwide. For the development of novel prophylactic and therapeutic strategies against the disease spectrum, a complete understanding of pneumococcal behavior in vivo is necessary. We evaluated the expression patterns of the proven and putative virulence factor genes adcR, cbpA, cbpD, cbpG, cpsA, nanA, pcpA, piaA, ply, psaA, pspA, and spxB after intranasal infection of CD1 mice with serotype 2, 4, and 6A pneumococci by real-time reverse transcription-PCR. Simultaneous gene expression patterns of selected host immunomodulatory molecules, CCL2, CCL5, CD54, CXCL2, interleukin-6, and tomor necrosis factor alpha, were also investigated. We show that pneumococcal virulence genes are differentially expressed in vivo, with some genes demonstrating niche- and serotype-specific differential expression. The in vivo expression patterns could not be attributed to in vitro differences in expression of the genes in transparent and opaque variants of the three strains. The host molecules were significantly upregulated, especially in the lungs, blood, and brains of mice. The pneumococcal-gene expression patterns support their ascribed roles in pathogenesis, providing insight into which protein combinations might be more appropriate as vaccine antigens against invasive disease. This is the first simultaneous comparison of bacterial- and host gene expression in the same animal during pathogenesis. The strategy provides a platform for prospective evaluation of interaction kinetics between invading pneumococci and human patients in culture-positive cases and should be feasible in other infection models.


Assuntos
Proteínas de Bactérias/biossíntese , Citocinas/biossíntese , Perfilação da Expressão Gênica , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/microbiologia , Fatores de Virulência/biossíntese , Animais , Sangue/imunologia , Sangue/microbiologia , Encéfalo/imunologia , Encéfalo/microbiologia , Contagem de Colônia Microbiana , Feminino , Pulmão/imunologia , Pulmão/microbiologia , Camundongos , Cavidade Nasal/microbiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Virulência/genética
18.
Infect Immun ; 75(4): 1843-51, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17261599

RESUMO

Successful colonization of the upper respiratory tract by Streptococcus pneumoniae is an essential first step in the pathogenesis of pneumococcal disease. However, the bacterial and host factors that provoke the progression from asymptomatic colonization to invasive disease are yet to be fully defined. In this study, we investigated the effects of single and combined mutations in genes encoding pneumolysin (Ply), pneumococcal surface protein A (PspA), and pneumococcal surface protein C (PspC, also known as choline-binding protein A) on the pathogenicity of Streptococcus pneumoniae serotype 2 (D39) in mice. Following intranasal challenge with D39, stable colonization of the nasopharynx was maintained over a 7-day period at a level of approximately 10(5) bacteria per mouse. The abilities of the mutant deficient in PspA to colonize the nasopharynx and to cause lung infection and bacteremia were significantly reduced. Likewise, the PspC mutant and, to a lesser extent, the Ply mutant also had reduced abilities to colonize the nasopharynx. As expected, the double mutants colonized less well than the parent to various degrees and had difficulty translocating to the lungs and blood. A significant additive attenuation was observed for the double and triple mutants in pneumonia and systemic disease models. Surprisingly, the colonization profile of the derivative lacking all three proteins was similar to that of the wild type, indicating virulence gene compensation. These findings further demonstrate that the mechanism of pneumococcal pathogenesis is highly complex and multifactorial but ascribes a role for each of these virulence proteins, alone or in combination, in the process.


Assuntos
Proteínas de Bactérias/fisiologia , Infecções Pneumocócicas/microbiologia , Pneumonia Pneumocócica/microbiologia , Streptococcus pneumoniae/patogenicidade , Estreptolisinas/fisiologia , Fatores de Virulência/fisiologia , Animais , Bacteriemia/microbiologia , Proteínas de Bactérias/genética , Contagem de Colônia Microbiana , Modelos Animais de Doenças , Feminino , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos CBA , Mutação , Nasofaringe/microbiologia , Streptococcus pneumoniae/genética , Estreptolisinas/genética , Virulência/genética , Fatores de Virulência/genética
19.
Microbiology (Reading) ; 152(Pt 2): 305-311, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16436418

RESUMO

Few studies have examined in vivo virulence gene expression in Streptococcus pneumoniae. In this study, expression of key pneumococcal virulence genes cbpA, pspA, ply, psaA, cps2A, piaA, nanA and spxB in the nasopharynx, lungs and bloodstream of mice was investigated, following intranasal challenge with the serotype 2 strain D39. Bacterial RNA was extracted, linearly amplified and assayed by real-time RT-PCR. At 72 h, cbpA mRNA was present at higher levels in the nasopharynx and lungs than in the blood. At this time-point, the mRNAs for PspA and PiaA were most abundant in the nasopharynx, whereas no significant difference in gene expression between niches was observed for ply, psaA and cps2A. Both nanA and spxB mRNAs were present in higher amounts in the nasopharynx than in the lungs or blood. These findings illustrate the dynamic nature of pneumococcal virulence gene expression in vivo.


Assuntos
Regulação Bacteriana da Expressão Gênica , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/patogenicidade , Virulência/genética , Animais , Feminino , Pulmão/microbiologia , Camundongos , Nasofaringe/microbiologia , Infecções Pneumocócicas/imunologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Streptococcus pneumoniae/enzimologia , Streptococcus pneumoniae/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...